蠡县三中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 姓名__________ 分数__________
一、选择题
1. 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( ) A.20种 B.24种 C.26种 D.30种
2. 《九章算术》是我国古代的数学巨著,其卷第五“商功”“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下丈,长AB=4丈,上棱EF=2丈,EF∥平面ABCD.EF与平面1丈,问它的体积是( ) A.4立方丈
B.5立方丈
C.6立方丈 D.8立方丈
3. 设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x﹣3x+4
2
有如下的问题:问积几何?”意底面宽AD=3ABCD的距离为
与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为( ) A.(﹣,﹣2]
B.[﹣1,0]
C.(﹣∞,﹣2]
D.(﹣,+∞)
4. 如图,一个底面半径为R的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是( )
A. B. C. D.
5. 已知命题p:∃x∈R,cosx≥a,下列a的取值能使“¬p”是真命题的是( ) A.﹣1 B.0 A.3﹣4i
C.1
D.2
6. 已知复数z满足(3+4i)z=25,则=( )
B.3+4i C.﹣3﹣4i D.﹣3+4i
第 1 页,共 16 页
精选高中模拟试卷
7. 已知函数f(x)满足f(x)=f(π﹣x),且当x∈(﹣A.
D.
﹣
B.
,
x
)时,f(x)=e+sinx,则( )
C.
8. 如图,已知双曲线=1(a>0,b>0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上一点,
直线PF2交y轴于点A,△AF1P的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的渐近线方程为( )
A.y=±x B.y=±3x C.y=±x D.y=±x
9. 已知f(x)为偶函数,且f(x+2)=﹣f(x),当﹣2≤x≤0时,f(x)=2x;若n∈N*,an=f(n),则a2017等于( )
A.2017 B.﹣8 C.
222D.
2y210.圆(x-2)+y=r(r>0)与双曲线x-=1的渐近线相切,则r的值为( ) 3A.2 B.2 C.3 D.22 【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.
(2i)211.复数z(i为虚数单位),则z的共轭复数为( )
i A.-4+3i B.4+3i C.3+4i D.3-4i
【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力. 12.“x≠0”是“x>0”是的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
二、填空题
13.若函数y=ln(
﹣2x)为奇函数,则a= .
第 2 页,共 16 页
精选高中模拟试卷
14.函数f(x)=x2ex在区间(a,a+1)上存在极值点,则实数a的取值范围为 .
15.已知平面上两点M(﹣5,0)和N(5,0),若直线上存在点P使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:
①y=x+1 ②y=2 ③y=x ④y=2x+1 是“单曲型直线”的是 .
16.若函数f(x)=3sinx﹣4cosx,则f′(
)= .
17.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的15﹣64岁劳动人口所占比例:
2030 2035 年份 年份代号t 所占比例y 1 68 2 65 2040 3 62 2045 4 62 2050 5 61 根据上表,y关于t的线性回归方程为 附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.
18.正方体ABCD﹣A1B1C1D1中,平面AB1D1和平面BC1D的位置关系为 .
三、解答题
19.已知函数f(x)=loga(1+x)﹣loga(1﹣x)(a>0,a≠1). (Ⅰ)判断f(x)奇偶性,并证明;
(Ⅱ)当0<a<1时,解不等式f(x)>0.
第 3 页,共 16 页
精选高中模拟试卷
20.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值; (Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.
21.设{an}是公比小于4的等比数列,Sn为数列{an}的前n项和.已知a1=1,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=lna3n+1,n=12…求数列{bn}的前n项和Tn.
22.已知数列{an}满足a1=3,an+1=an+p•3n(n∈N*,p为常数),a1,a2+6,a3成等差数列. (1)求p的值及数列{an}的通项公式; (2)设数列{bn}满足bn=
,证明bn≤.
第 4 页,共 16 页
精选高中模拟试卷
23.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1. (1)用定义证明f(x)在(0,+∞)上是减函数; (2)求函数f(x)的解析式.
24.【南京市2018届高三数学上学期期初学情调研】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R. (Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;
(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12lnx恒成立,求a的取值范围; (Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a), 记h(a)=M(a)-m(a),求h(a)的最小值.
第 5 页,共 16 页
精选高中模拟试卷
蠡县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】A
【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;
甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案; 甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案; 甲班级分配5个名额,有1种不同的分配方案. 故共有10+6+3+1=20种不同的分配方案, 故选:A.
【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.
2. 【答案】 【解析】解析:
选B.如图,设E、F在平面ABCD上的射影分别为P,Q,过P,Q分别作GH∥MN∥AD交AB于G,M,交DC于H,N,连接EH、GH、FN、MN,则平面EGH与平面FMN将原多面体分成四棱锥E-AGHD与四棱锥F-MBCN与直三棱柱EGH-FMN.
由题意得GH=MN=AD=3,GM=EF=2,
EP=FQ=1,AG+MB=AB-GM=2,
111
所求的体积为V=(S矩形AGHD+S矩形MBCN)·EP+S△EGH·EF=×(2×3)×1+×3×1×2=5立方丈,故选B.
3323. 【答案】A
2
【解析】解:∵f(x)=x﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,
2
故函数y=h(x)=f(x)﹣g(x)=x﹣5x+4﹣m在[0,3]上有两个不同的零点,
故有,即,解得﹣<m≤﹣2,
第 6 页,共 16 页
精选高中模拟试卷
故选A. 基础题.
4. 【答案】A
【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于
【解析】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆, 则这个椭圆的短半轴为:R,长半轴为:
222
∵a=b+c,∴c=
=,
,
∴椭圆的离心率为:e==. 故选:A.
【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.
5. 【答案】D
【解析】解:命题p:∃x∈R,cosx≥a,则a≤1. 下列a的取值能使“¬p”是真命题的是a=2. 故选;D.
6. 【答案】B
解析:∵(3+4i)z=25,z=∴=3+4i.
故选:B.
7. 【答案】D
【解析】解:由f(x)=f(π﹣x)知, ∴f(
)=f(π﹣
,<
)=f(
), =
=3﹣4i.
∵当x∈(﹣∵∴f(∴f(故选:D
<
<)<f(
x
)时,f(x)=e+sinx为增函数
, )<f()<f(
), ),
)<f(
第 7 页,共 16 页
精选高中模拟试卷
8. 【答案】D
【解析】解:设内切圆与AP切于点M,与AF1切于点N, |PF1|=m,|QF1|=n,
由双曲线的定义可得|PF1|﹣|PF2|=2a,即有m﹣(n﹣1)=2a,① 由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1, |MF2|=|NF1|=n, 即有m﹣1=n,② 由①②解得a=1, 由|F1F2|=4,则c=2, b=由双曲线
=﹣
,
=1的渐近线方程为y=±x,
x.
即有渐近线方程为y=故选D.
【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键.
9. 【答案】D
【解析】解:∵f(x+2)=﹣f(x), ∴f(x+4)=﹣f(x+2)=f(x), 即f(x+4)=f(x), 即函数的周期是4.
∴a2017=f(2017)=f(504×4+1)=f(1), ∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x, ∴f(1)=f(﹣1)=, ∴a2017=f(1)=, 故选:D.
第 8 页,共 16 页
精选高中模拟试卷
【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.
10.【答案】C
11.【答案】A
(2i)2【解析】根据复数的运算可知zi(2i)23i4,可知z的共轭复数为z=-4+3i,故选A.
i12.【答案】B
【解析】解:当x=﹣1时,满足x≠0,但x>0不成立. 当x>0时,一定有x≠0成立, ∴“x≠0”是“x>0”是的必要不充分条件. 故选:B.
二、填空题
13.【答案】 4 .
【解析】解:函数y=ln(可得f(﹣x)=﹣f(x), ln(ln(
+2x)=﹣ln(+2x)=ln(
﹣2x).
)=ln(
).
﹣2x)为奇函数,
22
可得1+ax﹣4x=1,
解得a=4.
故答案为:4.
14.【答案】 (﹣3,﹣2)∪(﹣1,0) .
2xx2x x
【解析】解:函数f(x)=xe的导数为y′=2xe+xe=xe (x+2), 令y′=0,则x=0或﹣2,
﹣2<x<0上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增,
第 9 页,共 16 页
精选高中模拟试卷
∴0或﹣2是函数的极值点,
2x
∵函数f(x)=xe在区间(a,a+1)上存在极值点,
∴a<﹣2<a+1或a<0<a+1, ∴﹣3<a<﹣2或﹣1<a<0.
故答案为:(﹣3,﹣2)∪(﹣1,0).
15.【答案】 ①② .
【解析】解:∵|PM|﹣|PN|=6∴点P在以M、N为焦点的双曲线的右支上,即对于①,联立
,消y得7x﹣18x﹣153=0,
2
,(x>0).
2
∵△=(﹣18)﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.
对于②,联立2
,消y得x=
,∴y=2是“单曲型直线”.
对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.
对于④,联立2
,消y得20x+36x+153=0,
2
∵△=36﹣4×20×153<0∴y=2x+1不是“单曲型直线”.
故符合题意的有①②. 故答案为:①②.
【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.
16.【答案】 4 .
【解析】解:∵f′(x)=3cosx+4sinx, ∴f′(
)=3cos
+4sin
=4.
故答案为:4.
【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题.
第 10 页,共 16 页
精选高中模拟试卷
17.【答案】 y=﹣1.7t+68.7
【解析】解: =
, =
=63.6.
=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.
=4+1+0+1+2=10.
∴
=﹣
=﹣1.7.
=63.6+1.7×3=68.7.
∴y关于t的线性回归方程为y=﹣1.7t+68.7. 故答案为y=﹣1.7t+68.7.
【点评】本题考查了线性回归方程的解法,属于基础题.
18.【答案】 平行 .
【解析】解:∵AB1∥C1D,AD1∥BC1,
AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=A C1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1 由面面平行的判定理我们易得平面AB1D1∥平面BC1D 故答案为:平行.
【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.
三、解答题
19.【答案】
【解析】解:(Ⅰ)由
,得
,
即﹣1<x<1,即定义域为(﹣1,1), 则f(x)为奇函数.
(Ⅱ)当0<a<1时,由f(x)>0, 即loga(1+x)﹣loga(1﹣x)>0, 即loga(1+x)>loga(1﹣x), 则1+x<1﹣x,
则f(﹣x)=loga(1﹣x)﹣loga(1+x)=﹣[loga(1+x)﹣loga(1﹣x)]=﹣f(x),
第 11 页,共 16 页
精选高中模拟试卷
解得﹣1<x<0,
则不等式解集为:(﹣1,0). 题的关键.
20.【答案】
【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本
【解析】解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣,
又曲线y=f(x)在点(1,f(1))处的切线平行于x轴, ∴f′(1)=0,即1﹣(Ⅱ)f′(x)=1﹣
=0,解得a=e. ,
①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值; ②当a>0时,令f′(x)=0,得ex=a,x=lna,
x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0; ∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增, 故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.
综上,当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值. (Ⅲ)当a=1时,f(x)=x﹣1+
,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+
,
则直线l:y=kx﹣1与曲线y=f(x)没有公共点, 等价于方程g(x)=0在R上没有实数解. 假设k>1,此时g(0)=1>0,g(
)=﹣1+
<0,
又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解, 与“方程g(x)=0在R上没有实数解”矛盾,故k≤1. 又k=1时,g(x)=所以k的最大值为1.
21.【答案】
【解析】解:(1)设等比数列{an}的公比为q<4,∵a1+3,3a2,a3+4构成等差数列. ∴2×3a2=a1+3+a3+4,∴6q=1+7+q,解得q=2.
2
>0,知方程g(x)=0在R上没有实数解,
第 12 页,共 16 页
精选高中模拟试卷
n1
(2)由(1)可得:an=2﹣.
bn=lna3n+1=ln23n=3nln2.
∴数列{bn}的前n项和Tn=3ln2×(1+2+…+n) =
ln2.
22.【答案】
n*
【解析】(1)解:∵数列{an}满足a1=3,an+1=an+p•3(n∈N,p为常数),
∴a2=3+3p,a3=3+12p,
∵a1,a2+6,a3成等差数列.∴2a2+12=a1+a3,即18+6p=6+12p 解得p=2.
n
∵an+1=an+p•3,
2n1
∴a2﹣a1=2•3,a3﹣a2=2•3,…,an﹣an﹣1=2•3﹣,
将这些式子全加起来 得 an﹣a1=3n﹣3,
n
∴an=3.
(2)证明:∵{bn}满足bn=设f(x)=
,则f′(x)=
,∴bn=.
,x∈N,
*
令f′(x)=0,得x=当x∈(0,
∈(1,2)
,+∞)时,f′(x)<0,
)时,f′(x)>0;当x∈(
且f(1)=,f(2)=,
*
∴f(x)max=f(2)=,x∈N.
∴bn≤.
【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用.
23.【答案】
【解析】(1)证明:设x2>x1>0,∵f(x1)﹣f(x2)=(
﹣1)﹣(
﹣1)=
,
由题设可得x2﹣x1>0,且x2•x1>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2), 故f(x)在(0,+∞)上是减函数. (2)当x<0时,﹣x>0,f(﹣x)=
﹣1=﹣f(x),∴f(x)=+1.
第 13 页,共 16 页
精选高中模拟试卷
又f(0)=0,故函数f(x)的解析式为f(x)=.
24.【答案】(1)a=
12(2)(-∞,-1-1e].(3)827 【解析】
f(x)+f(-x)=-6(a+1)x2≥12lnx对任意x∈(0,+∞)恒成立, 所以-(a+1)≥
2lnxx2. 令g(x)=2lnx212lnxx2,x>0,则g(x)=x3.
令g(x)=0,解得x=e.
当x∈(0,e)时,g(x)>0,所以g(x)在(0,e)上单调递增; 当x∈(e,+∞)时,g(x)<0,所以g(x)在(e,+∞)上单调递减.
所以g(x)e)=1max=g(e, 所以-(a+1)≥11e,即a≤-1-e,
所以a的取值范围为(-∞,-1-1e].
(3)因为f(x)=2x3-3(a+1)x2+6ax,
所以f ′(x)=6x2-6(a+1)x+6a=6(x-1)(x-a),f(1)=3a-1,f(2)=4. 令f ′(x)=0,则x=1或a. f(1)=3a-1,f(2)=4.
第 14 页,共 16 页
2)
(精选高中模拟试卷
②当
5<a<2时, 3
当x∈(1,a)时,f (x)<0,所以f(x)在(1,a)上单调递减; 当x∈(a,2)时,f (x)>0,所以f(x)在(a,2)上单调递增.
又因为f(1)>f(2),所以M(a)=f(1)=3a-1,m(a)=f(a)=-a3+3a2, 所以h(a)=M(a)-m(a)=3a-1-(-a3+3a2)=a3-3a2+3a-1. 因为h (a)=3a2-6a+3=3(a-1)2≥0.
5,2)上单调递增, 3558所以当a∈(,2)时,h(a)>h()=.
3327所以h(a)在(③当a≥2时,
当x∈(1,2)时,f (x)<0,所以f(x)在(1,2)上单调递减, 所以M(a)=f(1)=3a-1,m(a)=f(2)=4, 所以h(a)=M(a)-m(a)=3a-1-4=3a-5, 所以h(a)在[2,+∞)上的最小值为h(2)=1. 综上,h(a)的最小值为
8. 27点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值
第 15 页,共 16 页
精选高中模拟试卷
列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.
第 16 页,共 16 页
因篇幅问题不能全部显示,请点此查看更多更全内容