答案解析
一、苏教小学数学解决问题六年级下册应用题
1.一块长方形的铁皮(如下图),如果用它做一个高为8dm的圆柱形油桶的侧面,再另配一个底面,做这样一个油桶至少还需要多少平方分米铁皮?如果1L柴油重0.85kg,那么这个圆柱形油桶可以盛柴油多少千克?
解析: 解:所需铁皮:3.14×(15.7÷3.14÷2)2 =3.14×2.52 =19.625(dm2)
柴油的质量:19.625×8×0.85 =157×0.85 =133.45(kg)
答:做这样一个油桶至少还需要19.625平方分米铁皮,这个圆柱形油桶可以盛柴油133.45千克。
【解析】【分析】至少还需要铁皮的面积=油桶的底面积=π×圆柱的底面半径2 , 其中圆柱的底面半径=圆柱的底面周长÷π÷2;柴油的质量=圆柱的底面积×圆柱的高×1L柴油的重量。 2.甲、乙两个筑路队人数的比是7:3,如果从甲队派30人到乙队,则两队的人数比就成了3:2。甲、乙两个筑路队原来各有多少人?(用比例解) 解析: 设甲筑路队原来有7x人,则乙筑路队原来有3x人。 (7x-30):(3x+30)=3:2 2(7x-30)=3(3x+30) 14x-60=9x+90 14x-9x=90+60 5x=150 x=30, 所以7x=210;3x=90。
答:甲筑路队原来各有210人、乙筑路队原来有90人。
【解析】【分析】设甲筑路队原来有7x人,则乙筑路队原来有3x人。根据“ 如果从甲队派30人到乙队,则两队的人数比就成了3:2 ”可列出方程(7x-30):(3x+30)=3:2,根据比例的基本性质(在比例里,两个外项的积等于两个内项的积。)即可求出x的值,进一步即可得出7x与3x的值。
3.一张设计图纸的比例尺是1:600,图中的一个长方形大厅长4厘米,宽2.5厘米。这个大厅的实际面积是多少平方米?
解析: 解:实际长=4÷(1:600)=2400厘米=24米 实际宽=2.5÷(1:600)=1500厘米=15米
实际面积=24×15=360(平方米)
答:这个大厅的实际面积是360平方米。
【解析】【分析】比例尺=图上距离:实际距离,所以实际距离=图上距离÷比例尺,分别计算出长方形的实际长和实际宽,再根据长方形的面积=长×宽计算即可,注意单位转化。
4.
(1)请你在如图的圆中画一小圆,使得大圆和小圆的面积比是4:1.
(2)如果这个大圆的比例尺是1:200,请测量出所需数据并计算大圆的实际周长.(测量时保留整厘米数)
解析: (1)解:量得大圆的半径为2厘米,则小圆的半径为2÷2=1厘米, 如此小圆和大圆的面积比就为12:22=1:4,据此画图如下:
(2)解:量得大圆的半径为2厘米,则其实际长度为: 2÷
=400(厘米)=4(米)
所以大圆的实际周长为3.14×4×2=25.12(米) 答:大圆的实际周长为25.12米。
【解析】【分析】(1)两个圆的面积之比等于半径的平方之比,据此作答即可; (2)大圆实际的半径=大圆的图上半径÷比例尺,所以大圆的之际周长=π×r×2。
5.一种儿童玩具﹣陀螺(如图),上面是圆柱体,下面是圆锥体,经过测试,只有当圆柱直径4厘米,高5厘米,圆锥的高是圆柱高的 时,才能旋转时又稳又快,试问这个陀螺的体积是多大?(保留整立方厘米)
解析: 解:圆柱体积:3.14×(4÷2)2×5
=3.14×4×5 =12.56×5
=62.8(立方厘米);
圆锥的体积: ×3.14×(4÷2)2×(5× ), = ×3.14×4×3 =3.14×4
=12.56(立方厘米);
陀螺的体积:62.8+12.56=75.36(立方厘米)≈75(立方厘米); 答:这个陀螺的体积是75立方厘米。
【解析】【分析】根据题意可知,这个陀螺的体积=圆柱的体积+圆锥的体积,据此列式解答。
6.小军家离学校1千米,离图书馆2千米.他从家出发,走了15分钟,每分钟走64米.
(1)如果向东走,离学校还有多少米?
(2)如果向北走,小军现在走到什么位置?(先列式计算,再用★在图上标注出来) 解析: (1)解:1千米=1000米 1000﹣64×15 =1000﹣960 =40(米)
答:如果向东走,离学校还有40米。 (2)解:2厘米:1千米 =2:100000 =1:50000 960米=96000厘米 96000×
=1.92(厘米)
所以,如果向北走,小军的位置如图所示:
【解析】【分析】(1)先将单位进行换算,离学校还有的距离=小军家离学校的距离-小军已经走的距离,其中小军已经走的距离=小军每分钟走的速度×走的时间;
(2)先规定比例尺,即图上距离2厘米,实际距离1千米,那么比例尺=图上距离:实际距离,把小军已经走的距离进行单位换算,即960米=96000厘米,那么图上的距离=实际距离÷比例尺,据此作图即可。
7.小明调制了两杯蜂蜜水。第一杯用了30毫升蜂蜜和360毫升水。第二杯用了500毫升水,按照第一杯蜂蜜水中蜂蜜和水体积的比计算,第二杯应加入蜂蜜多少毫升? 解析: 解:设第二杯应加入蜂蜜x毫升。 30:360=x:500 360x=30×500 360x=15000 x=15000÷360 x≈41.7
答:第二杯应加入蜂蜜41.7毫升。
【解析】【分析】第一杯中蜂蜜质量:水的质量=第二杯中蜂蜜质量:水质量,据此列比例,然后根据比例的基本性质和等式性质解比例。
8.张宏上个月收集了13张邮票,有8角和1元2角这两种面值。这些邮票的总面值是14元。两种面值的邮票各有多少张?
解析: 解:设面值1元2角的邮票有x张,则面值8角的邮票有(13-x)张, 12x+8×(13-x)=140 12x+8×13-8x=140 4x+104=140 4x+104-104=140-104 4x=36 4x÷4=36÷4 x=9
面值8角的邮票有:13-9=4(张)
答:面值1元2角的邮票有9张,面值8角的邮票有4张。
【解析】【分析】此题主要考查了列方程解答应用题,设面值1元2角的邮票有x张,则
面值8角的邮票有(13-x)张,面值1元2角的邮票张数×面值1元2角+面值8角的邮票张数×面值8角=邮票的总面值,据此列方程解答。
9.在比例尺是1∶100的平面图上量得一间房子长8厘米,宽6厘米,这间房子实际的占地面积是多少平方米? 解析: 解:8÷ 6÷
=800(厘米)=8(米)
=600(厘米)=6(米)
8×6=48(平方米)。
答: 这间房子实际的占地面积是48平方米。
【解析】【分析】此题主要考查了比例尺的应用,已知图上距离和比例尺,要求实际距离,图上距离÷比例尺=实际距离,分别求出实际的长与宽,然后用长×宽=长方形的面积,据此列式解答。
10.在一幅比例尺是1:18000000的地图上,量得甲、乙两地的距离是6厘米。张师傅凌晨4时从甲地出发,平均每时行驶90千米,到达乙地时是几时? 解析: 解:6÷ 4时+12小时=16时。 答: 到达乙地时是16时。
【解析】【分析】根据题意可知,先求出甲、乙两地的实际距离,图上距离÷比例尺=实际距离,再用路程÷速度=时间,求出路上行驶的时间,最后用出发的时刻+路上行驶的时间=到达的时刻,据此列式解答。
11.在比例尺是1∶3000000的地图上,量得A、B两地的距离是50cm。如果甲、乙两辆客车同时从A、B两地相对开出,经过10小时相遇,甲客车每小时行76千米,乙客车每小时行多少千米? 解析: 解:50÷ 1500÷10- 76 =150-76 =74 ( km )
答:乙客车每小时行74km。
【解析】【分析】已知图上距离和比例尺,可以求出实际距离,图上距离÷比例尺=实际距离,然后用实际距离÷相遇时间-甲车的速度=乙车的速度,据此列式解答。
12.张华家有一只底面直径40厘米、深50厘米的圆柱形无盖水桶,这只水桶盛满了水,把水倒入长40厘米、宽30厘米、高50厘米的长方体玻璃鱼缸内,水会溢出吗?请用喜欢的方式解答,(水桶和鱼缸的厚度都忽略不计) 解析: 解:水的体积=3.14×(40÷2)2×50
= 150000000 ( cm )
=108000000(厘米)=1080(千米),
1080÷90=12(小时),
150000000cm = 1500km
=3.14×400×50 =62800(立方厘米)
鱼缸体积=40×30×50=60000(立方厘米) 因为62800>60000,所以水会溢出。
【解析】【分析】圆柱的体积=π×底面半径的平方×高,长方体的体积=长×宽×高,代入数值分别计算出体积,再将两个数值进行比较即可得出答案。
13.一张长方形的铁皮(如图),剪下图中的阴影部分恰好可以做成一个油桶(接头处不算).这个油桶的容积是多少立方分米?
x+x+3.14x=20.56 5.14x=20.56 x=4
阴影部分圆的半径为:4÷2=2(分米) 圆柱形油桶的容积为:3.14×22×4 =12.56×4
=50.24(立方分米)
解析: 解:设阴影部分中圆的直径为x分米,
答:做成油桶的容积是50.24立方分米。
【解析】【分析】观察图可知,小长方形的长是圆柱的底面周长,设阴影部分中圆的直径为x分米,则长方形的长是3.14x分米,长方形的长+两个圆的直径=20.56,据此列方程可以求出圆的直径,也是圆柱的高,要求圆柱的容积,依据公式:V=πr2h,据此列式解答。 14.下面的图象表示斑马和长颈鹿的奔跑情况。
(1)长颈鹿的奔跑路程与奔跑时间是否成正比例关系,为什么? (2)估计一下,两种动物18分钟各跑多少千米?
(3)从图象上看,斑马跑得快还是长颈鹿跑得快,为什么? 解析: (1)解:20:25=0.8,4:5=0.8
答:长颈鹿的奔跑路程与奔跑时间成正比例关系,因为奔跑路程与奔跑时间的比值一定。 (2)解:估计长颈鹿18分钟跑14千米,斑马18分钟跑22千米。
(3)解:从图像上看,斑马跑得快,因为同样跑24千米,斑马用20分钟,长颈鹿用30分钟。
【解析】【分析】(1)写出长颈鹿奔跑的路程与时间的比,看比值是否相等,如果比值相等,二者就成正比例关系;
(2)先找出18分钟的时间,然后找出18分钟对应的路程即可确定二者各跑多少千米; (3)路程相同,谁用时少谁就跑得快。
15.会议大厅里有10根底面直径0.6米,高6米的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5千克,刷这些柱子要用油漆多少千克? 解析: 解:3.14×0.6×6×10×0.5 =1.884×6×10×0.5 =11.304×10×0.5 =113.04×0.5 =56.52(千克)
答:刷这些柱子要用油漆56.52千克。
【解析】【分析】根据题意可知,先求出1根圆柱形柱子的侧面积,依据公式:S=Ch,然后乘10,求出10根圆柱形柱子的侧面积,最后用每平方米用油漆的质量×要粉刷的面积=刷这些柱子要用油漆的质量,据此列式解答。
16.一堆圆锥形黄沙,底面周长是25.12m,高1.5m,每立方米的黄沙重2t,这堆沙重多少吨?
解析: 解:25.12÷3.14÷2=4(米) 3.14×4×4×1.5÷3=25.12(立方米) 25.12×2=50.24( 吨 ) 答:这堆沙重50.24吨。
【解析】【分析】底面周长÷3.14÷2=底面半径;3.14×底面半径的平方×高÷3=圆锥体积;圆锥体积×2=这堆沙的重量。
17.学校组织篮球比赛,春明在这场篮球赛中一共投中10个球,因为他投中的球中有2分球,也有3分球,所以得到24分。春明在这场篮球赛中投中的2分球和3分球各是多少个?
解析: 解:设投中3分球x个,则2分球有(10-x)个。 3x+2(10-x)=24 3x+20-2x=24 x=24-20 x=4 10-4=6(个)
答:春明在这场篮球赛中投中的2分球有6个,3分球有4个。
【解析】【分析】此题属于鸡兔同笼问题,设投中3分球x个,则2分球有(10-x)个,根据得分是24分列出方程,解方程求出3分球的个数,进而求出2分球的个数即可。 18.下图,是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径2米的半圆。
(1)这个大棚的种植面积是多少平方米? (3)大棚内的空间约有多大? 解析: (1)2×15=30(平方米) 答:这个大棚的种植面积是30平方米。 (2)3.14×2×15÷2 =3.14×15 =47.1(m2)
3.14×( )2=3.14(m2) 47.1+3.14=50.24(m2)
(2)覆盖在这个大棚上的塑料薄膜约有多少平方米?
答:覆盖在这个大棚上的塑料薄膜约有50.24平方米。 (3)解:3.14×( )2×15=47.1(立方米) 47.1÷2=23.55(立方米)
答:大棚内的空间约有23.55平方米。
【解析】【分析】(1)大棚的种植面积是长方形,长是15米,宽是2米,根据长方形面积公式计算;
(2)塑料薄膜的面积是一个整圆的面积,加上圆柱侧面积的一半,根据公式计算即可; (3)大棚内的空间是圆柱体积的一半,用底面积乘高再除以2即可求出空间的大小。 19.一个底面半径是10厘米的圆柱体杯子中装有水,水里浸没一个底面半径是5厘米的圆锥体铅锤。把铅锤从杯中取出后,杯里的水面下降了1厘米。圆锥体铅锤的高是多少厘米?
解析: 解:3.14×102×1÷÷(3.14×52) =3.14×300÷3.14÷25 =300÷25 =12(厘米)
答:圆锥体的高是12厘米。
【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆柱的体积公式计算出1厘米高水的体积,也就是圆锥铅锤的体积。圆锥的高=体积÷÷底面积,根据公式计算圆锥的高即可。
20.下面是一根钢管,求它所用钢材的体积。(单位:分米)
解析: 20÷2=10(分米), 10÷2=5(分米), 3.14×(102-52)×30 =3.14×(100-25)×30 =3.14×75×30 =235.5×30
=7065(立方分米)
【解析】【分析】观察图可知,先求出底面圆环的面积,根据公式:S=π(R2-r2),再应用底面积×高=圆柱的体积,据此列式解答。
21.一节空心混凝土管道的内直径是60厘米,外直径是80厘米,长300厘米,浇制100节这种管道需要多少立方米的混凝土? 解析: 300厘米=3米 60÷2=30(厘米)=0.3(米) 80÷2=40(厘米)=0.4(米)
3.14×(0.4×0.4-0.3×0.3)×3×100=3.14×0.07×300=65.94(立方米) 答: 浇制100节这种管道需要65.94立方米的混凝土 。
【解析】【分析】空心混凝土管道的底面积×高=一节的体积;一节的体积×100节=浇制100节这种管道需要的混凝土体积。 22.看图完成下面各题。
(1)学校距市政府800m,这幅图的比例尺是________。
(2)欢欢家在市政府西偏北30°的方向上,距市政府1.2km,请在图中用“ (3)从欢欢家沿幸福路向南直行可到人民路,请你在图中画出幸福路。 解析: (1)1:32000
(2)1.2km=120000cm 120000×
=3.75(cm),作图如下:
”标出来。
(3)
【解析】【解答】(1)学校到市政府的图上距离是2.5cm。 800m=80000cm 2.5:80000=1:32000 故答案为:1:32000.
【分析】(1)量出市政府到学校的图上距离,图上距离÷实际距离=比例尺。
(2)先计算欢欢家在市政府的图上距离,图上距离=实际距离×比例尺。西偏北30°就是从西向北旋转30°方向。
(3)从欢欢家向南画一条垂直于人民路的直线表示幸福路。
23.用弹簧秤称物体,称3千克的物体,弹簧长11.5厘米;称4千克的物体,弹簧长12厘米。称6千克的物体时,弹簧长多少厘米? 解析: 解:弹簧原长x厘米。
解得x=10
6×(11.5-10)÷3=3(厘米) 3+10=13(厘米) 答:弹簧长13厘米。
【解析】【分析】设弹簧原长x厘米,根据等量关系,第一次称的物体质量:(第一次弹簧长-弹簧原长)=第二次称的物体质量:(第二次弹簧长-弹簧原长);称6千克物体时弹簧长=物体质量×(第一次弹簧长-弹簧原长)÷第一次称的物体质量。
24.某店主委托运输公司运1000只水晶摆件,商定每只水晶摆件运费0.4元,如果损坏一只,不但不给运费,还要赔偿损失5.1元。结果运输公司获得运费372.5元。运输公司损坏了多少只水晶摆件?
解析: 解:(0.4×1000-372.5)÷(5.1+0.4) =(400-372.5)÷5.5 =27.5÷5.5 =5(只)
答:运输公司损坏了5只水晶摆件。
【解析】【分析】首先假设运输1000只水晶摆件一件也没有破损,则,运输公司应该获得的运费=每只水晶摆件运费×水晶摆件总数;然后计算水晶摆件破损数,水晶摆件破损数=(运输公司应该获得的运费-实际获得运费)÷(每只水晶摆件的运费+损失一件水晶摆件的赔偿费)。
25.在“脑筋急转弯”抢答比赛中,一共有6道题,规定答对1题得5分,答错一题扣8分,不答得0分,欣欣共得了12分,她抢答了几次?答对了几题?答错了几题? 解析: 解:(5×5-12)÷(8+5) =13÷13 =1(道) 5-1=4(道)
答:她抢答了5次,答对了4题,答错了1题。
【解析】【分析】因为最后得分是12分,所以可以判断他不会6道题都答对,我们可以理解为抢答了5次;
按鸡兔同笼理解,五次全部答对,得了25分,先计算出与实际得分的差,再算出答对和答错的分差,差÷差=答错的题数,5题-答错的题数=答对的题数。
26.我们都知道:圆的周长与直径的比值就是圆周率。它是一个无限不循环小数,用字母π表示。但你未必知道“圆方率”,就让我们一起来探索吧!
【探索】把一个棱长a厘米的正方体削成一个最大的圆柱体。求这个圆柱体与正方体体积
和表面积比。(计算涉及圆周率,直接用π表示)
解析: 解:体积:圆柱体的体积:π·()2·a=πa3;正方体的体积:a3; 圆柱体与正方体的体积比:πa3:a3=π:4。
表面积:圆柱体的表面积:2·π· ·a+π·( )2×2= πa2 , 正方体的表面积:6a2 圆柱体与正方体的表面积比: πa2:6a2=π:4。 答:这个圆柱体和正方体体积和表面积的比都是π:4。
【解析】【分析】圆柱的底面直径与正方体的棱长相等。圆柱的表面积=底面积×2+侧面积,圆柱的体积=底面积×高,正方体表面积=棱长×棱长×6,正方体体积=棱长×棱长×棱长,根据公式分别用字母表示,然后写出相应的比并化成最简整数比即可。
27.如图是一个饮料瓶的示意图,饮料瓶的容积是625mL,里面装有一些饮料。将这个瓶子正放时,饮料高10cm,倒放时,空余部分的高是2.5cm,求瓶内的饮料为多少mL?
解析: 解:625mL=625cm3 625÷(10+2.5)×10 =625÷12.5×10 =50×10 =500(cm3) 500cm3=500mL
答:瓶内的饮料为500mL.
【解析】【分析】 饮料体积=底面积×高,底面积=瓶子的体积÷(10+2.5)。
28.一个正方体玻璃容器内盛有水,水面高度为12厘米,从内测出玻璃容器的棱长为20厘米。在这个容器中竖直放入一个底面积为80平方厘米、高30厘米的圆柱形铁块,这时水面高度是多少厘米?
解析: 解:20×20×12÷(20×20-80) =4800÷320 =15(厘米)
答:水面高度是15厘米。
【解析】【分析】放入圆柱形铁块后水的底面积就容器的底面积减去铁块的底面积,用水的体积除以放入铁块后水的底面积即可求出此时水面的高度。
29.在学校篮球比赛中,李军2分球加3分球共投进8个,共得19分,他2分球和3分
球各投进多少个?
解析: 解:2分球:(3×8-19)÷(3-2)=5(个) 3分球:8-5=3(个)
答:2分球投进5个,3分球投进3个。
【解析】【分析】本题先假设全是3分球,然后根据出现的分数差,可推算出2分球的个数。2分球的个数=(共投进8个×3-实际得分)÷分数差,3分球的个数=共投进8个-2分球的个数。
30.有40位同学在14张乒乓球桌上同时进行单打或双打比赛(单打一张桌上2个人,双打一张桌上4个人)。进行单打和双打比赛的乒乓球桌各有几张? 解析: 解:双打:(40-14×2)÷(4-2)=6(张) 单打:14-6=8(张)
答:进行单打乒乓球桌有6张,进行双打比赛的乒乓球桌有8张。
【解析】【分析】这是一道鸡兔同笼问题,解答此类问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。 本题先假设全是单打,双打桌数=(总人数- 单打一张桌上2个人 ×总桌数)÷一桌单双打人数的差,据此解答即可。
31.一个底面直径是2dm的圆柱形玻璃杯内盛有一些水,恰好占杯子容量的 。现将一个铁块完全浸没在水中,水面上升了5cm,这时水面距杯口还有4cm。这个铁块的体积是多少?这个杯子的容积是多少升? 解析: 解:2dm=20cm (20÷2)2×3.14×5=1570cm3 (5+4)÷(1-)=15cm 15÷5×1570=4710cm3=4.71升
答:这个铁块的体积是1570cm3 , 这个杯子的容积是4.71升。
【解析】【分析】先把单位进行换算,即2dm=20cm,那么这个铁块的体积=(玻璃杯的底面直径÷2)2×π×水面上升的高度;玻璃杯的高度=(水面上升的高度+水面上升后水面距杯口的距离)÷(1-原来水占杯子容量的几分之几),所以这个杯子的容积=玻璃杯的高度÷水面上升的高度×铁块的体积。
32.下图的博士帽是用黑色卡纸做成的,上面是边长30厘米的正方形,下面是底面直径16厘米、高10厘米的无底无盖的圆柱。制作一个这样的“博士帽”至少需要多少平方厘米的黑色卡纸?
解析: 解:3.14×16×10+30×30 =502.4+900 =1402.4(cm2)
答: 制作一个这样的“博士帽”至少需要1402.4平方厘米的黑色卡纸。
【解析】【分析】这个“博士帽”面积是一个正方形的面积和一个圆柱的侧面积组成,正方形的面积=边长×边长,圆柱的侧面积=πdh,再把两部分的面积合起来,即可求得“博士帽”的面积。
33.(如图所示)一个棱长6cm的正方体,从正方体的底面向内挖去一个最大的圆锥体,这个圆锥的体积是多少cm3?
解析: 解:底面半径:6÷2=3(厘米) 3.14×3×3×6÷3 =28.26×6÷3 =169.56÷3 =56.52(立方厘米)
答:这个圆锥的体积是56.52立方厘米。
【解析】【分析】圆锥体的底面直径是6厘米,高是6厘米,圆锥体积=π×半径的平方×高÷3,据此解答。
34.下图是甲、乙两辆汽车行驶的路程和时间的关系图。
(1)甲车的路程与时间________,乙车的路程和时间________。 A.成正比例 B.成反比例 C.不成比例
(2)若乙车按目前的平均速度继续行驶,能不能追上甲车?请说明理由。 解析: (1)A;C
(2)解:420÷6=70(千米/小时) 70<80
所以,按照目前的平均速度,乙车不能追上甲车。 【解析】【解答】(1)240÷3=80(千米/小时) 480÷6=80(千米/小时)
因为甲车的路程与时间的比值是定值,所以,甲车的路程与时间程正比例。 120÷1=120(千米/小时) (180-120)÷(4-1) =60÷3
=20(千米/小时) (420-180)÷(6-4) =240÷2
=120(千米/小时)
因为乙车的路程与时间的比值不是定值,所以,乙车的路程与时间不成比例。 故答案为:(1)A;C。
【分析】(1)两个量的比值是定值,则两个量成正比例,据此判断即可。
(2)乙车的平均速度=总路程÷总时间,甲车的速度=路程÷时间,代入数值计算,并比较两车的速度即可判断。
35.一台压路机的前轮是圆柱形,轮宽2米,半径0.6米.前轮转动一周,轧路的面积是多少平方米?
解析: 解:3.14×0.6×2×2 =3.14×2.4 =7.536(平方米)
答:轧路的面积是7.536平方米。
【解析】【分析】前轮转动一周,轧路的面积就是求圆柱的侧面积,圆柱的侧面积=底面周长×高;底面周长=2×π×半径。
36.下图中A、B、C表示三个城市的车站位置。根据图中的比例尺,求下列问题。
(1)先测量图上有关长度(精确到整厘米),再分别求出A站到B站、B站到C站的实际距离。
(2)甲、乙两车分别同时从A、C两站开出,甲车从A到B再到C要行5小时;乙车从C到B再到A要行4小时。照这样的速度, ①两车开出几小时后可以在途中相遇?
②在相遇前当乙车到达B站时,甲车还离B站多少千米? ③如果两车要在B站相遇,则乙车可以从C站迟开出多少小时?
解析: (1)A站到B站的图上距离是3厘米,B站到C站的图上距离是2厘米。 3÷ 2÷
=15000000(厘米)=150(千米) =10000000(厘米)=100(千米)
答:A站到B站的实际距离是150千米,B站到C站的实际距离是100千米。 (2)解:甲车速度:250÷5=50(千米) 乙车速度:250÷4=62.5(千米) ①250÷(50+62.5)=250÷112.5=(时) 答:两车开出小时后可以在途中相遇。 ②100÷62.5=1.6(时) 150-50×1.6=70(千米) 答:甲车还离B站70千米。 ③150÷50=3(小时)
(62.5×3-100)÷62.5=1.4(小时) 答:乙车可以从C站迟开出1.4小时。
【解析】【分析】(1)实际距离=图上距离÷比例尺,然后进行单位换算,即1千米=100000厘米;
(2)甲车的速度=从A到B再到C的距离÷甲车从A到B再到C要行的时间,乙车的速度=从A到B再到C的距离÷乙车从C到B再到A要行的时间; ①两车相遇需要的时间=从A到B再到C的距离÷两车的速度和;
②当乙车到达B站用的时间=从C到B的距离÷乙车的速度,所以甲车还离B站的距离=从A到B的距离-甲车的速度×当乙车到达B站用的时间;
③甲车到达B站用的时间=从A到B的距离÷甲车的速度,那么乙车可以从C站迟开出的时间=(乙车的速度×甲车到达B站用的时间-从C到B的距离)÷乙车的速度。
37.如图所示,有个由圆柱和圆锥组成的容器,圆柱高7cm,圆锥高3cm,容器内水深5cm,将这个容器倒过来时,从圆锥尖端到水面的高度是多少厘米?
解析: 解:观察图可知,圆柱与圆锥的底面一样大,设它们的底面积都是S 水的体积是:5×S=5S, 圆锥的体积是:×3×S=S
倒过来后,除了填满圆锥后剩下体积是:5S-S=4S, 4S÷S=4(厘米) 3+4=7(厘米)
答: 从圆锥尖端到水面的高度是7厘米。
【解析】【分析】此题主要考查了圆柱和圆锥体积的应用,观察图可知,圆柱与圆锥的底面是同样大的,可以设它们的底面积都是S,分别求出水的体积与圆锥的体积,然后用水的体积-圆锥的体积=倒过来后,除了填满圆锥后剩下体积,然后用剩下的体积÷底面积=圆柱部分的高度,最后用圆锥的高度+圆柱部分的高度=从圆锥尖端到水面的高度,据此列式解答。
38.长沙造纸厂的生产情况如下表,根据表回答问题. 时间(天) 1 2 3 4 5 6 7 … 生产量(吨) 70 140 210 280 350 420 490 … (1)表中相关联的量是________和________. (2)根据表中的数据,写出一个比例________. (3)表中相关联的两种量成________关系.
(4)在图中描出表示时间和相应生产量的点,并把它们按顺序连接起来.
(5)估计生产550吨纸片,大约需要________天(填整数). 解析: (1)时间;生产量 (2)1:70=2:140(答案不唯一) (3)正
(4)
(5)8
【解析】【解答】解:(1)表中相关联的量是时间和生产量; (2)根据表中的数据,写出一个比例是:1:70=2:140; (3)表中相关联的两种量成正比例; (5)估计生产550吨纸片,大约需要8天。
故答案为:(1)时间;生产量;(2)1:70=2:140(答案不唯一);(3)正;(8。
【分析】(1)表格中变化的两个量就是相关联的两个量;
(2)根据表格中相对应的数据写出两个比值相等的比并组成比例即可; (3)两个相关联的量的比值一定,二者成正比例关系;
(4)根据每组对应的数据描出对应的点,然后顺次连接各点成线即可; (5)根据每天的生产量估计出生产550吨纸片大约需要的天数。 39.用a,h分别表示面积为96平方厘米的平行四边形的底和高。 (1)请完成下表,并回答问题。 a/cm 1 2 3 4 6 8 12 24 48 h/cm 96 (2)A随着a的增加是怎样变化的? (3)h与a成什么关系?为什么?
(4)当平行四边形的底为15厘米时,高是多少厘米?
5)解析: (1)解:填表如下: a/cm h/cm 1 96 2 48 3 32 4 24 6 19 8 12 12 8 25 4 48 2 (2)解:h随着a的增加而减少。 (3)解:因为底×高=平行四边形的面积(一定),所以平行四边形底和高成反比例。 (4)解:15h=96 h=96÷15=6.4 答:高是6.4厘米。
【解析】【分析】(1)平行四边形的面积=底×高,据此计算填表即可; (2)根据表中数据的走向作答即可;
(3)如果xy=k(k为常数,x,y≠0),那么x和y成反比例;平行四边形的面积=底×高,平行四边形的面积一定,那么平行四边形底和高成反比例; (4)平行四边形的高=平行四边形的面积÷底,据此作答即可。
40.六年的小学生活即将结束,婷婷计划星期天请5名同学到家商量去养老院参加义务劳动的事,家中只有一盒长方体饮料(如下图),假如用来招待同学,给每位同学倒上满满一杯(如下图)后,她自己还有饮料吗?(请写出计算过程,盒子、杯子的厚度均勿略不计)(单位:厘米)
解析: 解:长方体容积:20×10×8=200×8=1600(毫升) 5个圆柱容积:3.14×
×10×5=3.14×9×50=3.14×450=1413(毫升)
饮料剩余:1600-1413=187(毫升) 答:有。
【解析】【分析】长方体的体积=长×宽×高;圆柱的体积=底面积×高,饮料剩余=长方体容积-5个圆柱容积;据此解答即可。
41.下图是爸爸制作一个圆柱形油桶的下料图,阴影部分是制作油桶所用的铁皮,空白部分为边角料,请你根据下图计算这个油桶的容积。(接头处忽略不计,保留整立方分米)
解析: 解:底面半径:16.56÷(2×3.14+2) =16.56÷8.28 =2(dm) 容积:3.14×2²×2×4 =12.56×8 =100.48 ≈100(dm³)
答:这个油桶的容积100dm³。
【解析】【分析】底面周长+底面直径=16.56,可得底面半径=16.56÷(2×π+2),容积=πr2×高,高=2×直径。
42.小乐家客厅是长方形的,用边长0.6m的方砖铺地,需要200块,如果改用边长0.5m的方砖铺地,需用多少块?(用比例解) 解析: 解:设需用x块。 0.5×0.5×x=0.6×0.6×200 0.25x=72 x=288
答: 改用边长0.5m的方砖铺地,需用288块。
【解析】【分析】 边长0.6m的方砖的面积×块数=边长0.5m的方砖的面积×块数=客厅的面积,客厅面积一定,所以方砖的面积与块数成反比例。
43.把一个圆柱的侧面展开后得到一个长18厘米,宽12厘米的长方形,这个圆柱的体积最大可能是多少立方厘米?(π取近似值3) 解析: 解:第一种情况:18÷3÷2 =6÷2 =3(厘米) 3×3²×12 =3×9×12 =27×12
=324(立方厘米)
第二种情况:12÷3÷2 =4÷2 =2(厘米) 3×2²×18 =3×4×18 =12×18
=216(立方厘米) 324立方厘米>216立方厘米
答:这个圆柱的体积最大可能是324立方厘米。
【解析】【分析】此题分两种情况,(1)当底面周长是18厘米时,高是12厘米,r=C÷π÷2,得出半径,然后底面积×高就可以计算出体积;(2)当底面周长是12厘米时,高是18厘米,r=C÷π÷2,得出半径,然后底面积×高就可以计算出体积。 44.以小强家为观测点,量一量,填一填,画一画。
(1)新城大桥在小强家________方向上________m处。
(2)火车站在小强家________偏________(________)°方向上________m处。 (3)电影院在小强家正南方向上1500m处。请在图中标出电影院的位置。 (4)商店在小强家北偏西45°方向上2000m处。请在图中标出商店的位置。 解析: (1)正西;2600 (2)北;东;70;2000
(3)解: 电影院与小强家的图上距离为1500×(1:100000) =0.015米 =1.5厘米; 如图所示:
(4)解:商店与小强家的图上距离为2000×(1:100000) =0.02米 =2厘米; 如图所示:
【解析】【解答】(1)小强家到新城大桥图上距离为2.6厘米。 2.6÷(1:100000) =2.6×100000 =260000(厘米) =2600米
所以新城大桥在小强家正西方向上2600米处。 (2)火车站与小强家的图中距离为2厘米。 2÷(1:100000) =2×100000 =200000(厘米) =2000米
所以火车站在小强家北偏东70°方向上2000m处。
【分析】根据上北下南左西右东即可确定位置,根据比例尺=图上距离:实际距离即可得出实际距离=图上距离÷比例尺,图上距离=实际距离×比例尺,本题中(1)、(2)需要量出图上距离。
45.下图是装某种饮料的易拉罐。请你灵活思考,解决下面的问题。
(1)制作1个这种易拉罐,大约需要多大面积的铝箔? (2)你认为饮料厂向易拉罐中装多少饮料合适?
(3)饮料厂将12罐饮料装在一个盒子里,请你设计出两种不同的包装盒,并给出设计方案。
解析: (1)解:3.14×6×10+3.14×(6÷2)2×2 =3.14×6×10+3.14×9×2 =188.4+56.52 =244.92(平方厘米)
答:制作1个这种易拉罐,大约需要244.92平方厘米的铝箔。 (2)解:3.14×(6÷2)2×10 =3.14×9×10 =282.6(立方厘米) 1立方厘米=1毫升,
所以饮料厂向易拉罐中装270mL饮料最合适。 (3)解:12=6×2=4×3,
第一种方案:可将12瓶饮料放2排,每层6排; 第二种方案:可将12瓶饮料放3排,每排4瓶。
【解析】【分析】(1)要求需要多大面积的铝箔,则是求易拉罐的表面积,圆柱的表面积=圆柱的侧面积(底面周长【π×底面直径】×高)+2个底面积(π×底面半径的平方),代入数值计算即可;
(2)要求装多少饮料合适,即不大于圆柱的体积即可,圆柱的体积=底面积×高,代入数值计算即可;
(3)将12进行因式分解可得12=6×2=4×3,即第一种方案:可将12瓶饮料放2排,每层6排;第二种方案:可将12瓶饮料放3排,每排4瓶。 46.圆柱形的无盖水桶,底面直径30厘米,高50厘米。
(1)做这个水桶至少需要用多少平方分米的铁皮?(得数保留两位小数)
(2)如果在这个水桶中先倒入14.13升的水,再把几条鱼放入水中,这时量的桶内的水深是21厘米,这几条鱼的体积一共是多少? 解析: (1)解:30厘米=3分米,50厘米=5分米 (3÷2)2×3.14+3×3.14×5=54.165≈54.17(平方分米)
答:做这个水桶至少需要用54.17平方分米的铁皮。 (2)解:14.13÷(3÷2)2÷3.14=2(分米) 21厘米=2.1分米 2.1-2=0.1(分米)
(3÷2)2×3.14×0.1=0.7065(立方分米) 答:这几条鱼的体积一共是0.7065立方分米。
【解析】【分析】(1)先把单位进行换算,即30厘米=3分米,50厘米=5分米,那么做这个水桶至少需要铁皮的平方分米数=侧面积+底面积,其中底面积=π×(直径÷2)2 , 侧面积=πdh;
(2)倒入水后水的高度=水的容积÷π÷(直径÷2)2 , 那么这几条鱼的体积=水面身高的高度×π×(直径÷2)2。
47.把一块长8厘米,宽5厘米,高3厘米的铁块熔铸成一个底面积为31.4平方米的圆锥,这个圆锥的高是多少厘米?(结果保留一位小数) 解析: 解:长方体铁块的体积:8×5×3=40×3=120(立方厘米) 圆锥的高:120÷÷31.4=360÷31.4≈11.5(厘米) 答: 这个圆锥的高是11.5厘米。
【解析】【分析】这是一道典型的“等级变形”问题,正方体的体积等于圆柱的体积,据此解答即可。
48.一堆圆锥形小麦,量得它的底面周长是12.56米,高是1.2米,如果每立方米小麦重0.6吨,这堆小麦重多少吨?(用“四舍五入”法保留一位小数) 解析: 解: 圆锥的底面半径=12.56÷3.14÷2 =4÷2 =2(米) 3.14×22×1.2××0.6 =3.14×4×1.2××0.6 =3.14×1.6×0.6 =5.024×0.6 ≈3.0(吨)
答:这堆小麦重3.0吨。
【解析】【分析】这堆小麦的重量=小麦的体积即圆锥的体积(π×底面半径的平方×圆锥的高×)×每立方米小麦的重量,圆锥的底面半径=圆锥的底面周长÷π÷2,代入数值计算即可得出答案。
49.鸡兔同笼,有25个头,80条腿,鸡兔各多少只? 解析: 解:25×4-80=20(条腿) 鸡:20÷(4-2)=10(只)
兔:25-10=15(只) 答:鸡10只,兔15只。
【解析】【分析】此题主要考查了鸡兔同笼的应用,可以用假设法解答,假设全部是兔,则一共有25×4=100条腿,比实际多了100-80=20条腿,每只兔比每只鸡多4-2=2条腿,一共多的腿数÷2=鸡的只数,然后用鸡和兔的总只数-鸡的只数=兔的只数,据此列式解答。 50.工地上有一堆圆锥形三合土,底面周长为37.68m,高为5m。用这堆三合土在15m宽的公路上铺4cm厚的路面,可以铺多少米? 解析: 解:圆锥的底面半径=37.68÷3.14÷2 =12÷2 =6(米)
圆锥的体积=3.14×62×5× =3.14×36×5× =113.04×5× =565.2× =188.4(立方米)
可以铺的长度=188.4÷15÷(4÷100) =12.56÷0.04 =314(米)
答: 可以铺314米。
【解析】【分析】圆锥的底面周长=π×底面半径×2,即可得出圆锥的底面半径=圆锥底面周长÷π÷2;圆锥的体积=π×圆锥的底面半径的平方×圆锥的高×计算出土堆的体积,接下来根据长方体的长=土堆的体积÷长方体的宽÷长方体的高(铺土的厚度,注意单位化成m),计算即可得出答案。
因篇幅问题不能全部显示,请点此查看更多更全内容