首页 行业资讯 宠物日常 宠物养护 宠物健康 宠物故事
您的当前位置:首页正文

2008年沈阳市中考数学

2020-05-04 来源:画鸵萌宠网


2008年沈阳市中等学校招生统一考试

数学试卷

*考试时间120分钟 试卷满分150分

一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)

1.沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( ) A.25.310亩

5B.2.5310亩

6C.25310亩

4D.2.5310亩

72.如图所示的几何体的左视图是( )

正面

第2题图

A. B. C. D.

3.下列各点中,在反比例函数yA.(2,1)

2图象上的是( ) xD.(1,2)

3 B.,23C.(2,1)

4.下列事件中必然发生的是( )

A.抛两枚均匀的硬币,硬币落地后,都是正面朝上 B.掷一枚质地均匀的骰子,朝上一面的点数是3 C.通常情况下,抛出的篮球会下落 D.阴天就一定会下雨

5.一次函数ykxb的图象如图所示,当y0时,x的取 值范围是( ) A.x0 B.x0

y 3 O x

2

C.x2

o

D.x2

第5题图

6.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A.50

oB.80

2oC.65或50

oo

D.50或80

oo7.二次函数y2(x1)3的图象的顶点坐标是( )

A

A.(1,3)

B.(1,3)

C.(1,3)

D.(1,3)

F E

C

第8题图

D

8.如图所示,正方形ABCD中,点E是CD边上一点,连接AE, 交对角线BD于点F,连接CF,则图中全等三角形共有( )

第 1 页 共 11 页

B

A.1对 B.2对 C.3对 二、填空题(每小题3分,共24分)

oD.4对

9.已知A与B互余,若A70,则B的度数为 . 10.分解因式:2m8m .

11.已知△ABC中,A60,ABC,ACB的平分线交于点O,

o3A D

O 则BOC的度数为 .

C 12.如图所示,菱形ABCD中,对角线AC,BD相交于点O,若再补 B 第12题图 充一个条件能使菱形ABCD成为正方形,则这个条件是 (只

填一个条件即可). C B 13.不等式2xx6的解集为 .

14.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡

A E 12AB长13米,且tanBAE,则河堤的高BE为 米.

第14题图 515.观察下列图形的构成规律,根据此规律,第8个图形中有 个圆.

D

……

第1个 第2个 第3个 第15题图

第4个

16.在平面直角坐标系中,点A的坐标为(11),,点B的坐标为(111),,点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有 个.

三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)

117.计算:(1)052723.

2

18.解分式方程:

11x. 2x33x

19.先化简,再求值:

1y(xy)(xy)2x22y2,其中x,y3.

3

第 2 页 共 11 页

20.如图所示,在66的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,如图①中的三角形是格点三角形. (1)请你在图①中画一条直线将格点三角形分割成两部分,将这两部分重新拼成两个不同的格点四边形,并将这两个格点四边形分别画在图②,图③中; (2)直接写出这两个格点四边形的周长.

图① 图② 图③

第20题图

四、(每小题10分,共20分)

21.如图所示,AB是eO的一条弦,ODAB,垂足为C,交eO于点D,点E在eO上.

(1)若AOD52,求DEB的度数;

oE O (2)若OC3,OA5,求AB的长.

B A C D 第21题图

22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?

(2)如果用A,B,C分别表示小刚的象、虎、鼠三张牌,用A1,B1,C1分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.

小刚 小明

A B C A1 B1 C1

第22题图

第 3 页 共 11 页

五、(本题12分)

23.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:

一班竞赛成绩统计图 二班竞赛成绩统计图 人数 12 D级 12 16% 10 A级 8 6 C级 44% 5 6 36% 4 2 2 0 A B C D B级4% 等级

第23题图

请你根据以上提供的信息解答下列问题:

(1)此次竞赛中二班成绩在C级以上(包括C级)的人数为 ; (2)请你将表格补充完整:

一班 二班 平均数(分) 中位数(分) 众数(分) 87.6 87.6 90 100 (3)请从下列不同角度对这次竞赛成绩的结果进行分析:

①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;

③从B级以上(包括B级)的人数的角度来比较一班和二班的成绩. 六、(本题12分)

24.一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速度匀速行驶,前往与A处相距636千米的B地,下表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系: 行驶时间x(时) 余油量y(升) 0 100 1 80 2 60 2.5 50 (1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y与x之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)

(2)按照(1)中的变化规律,货车从A处出发行驶4.2小时到达C处,求此时油箱内余油多少升?

(3)在(2)的前提下,C处前方18千米的D处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B地.(货车在D处加油过程中的时间和路程忽略不计)

第 4 页 共 11 页

七、(本题12分)

25.已知:如图①所示,在△ABC和△ADE中,ABAC,ADAE,BACDAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BECD;②△AMN是等腰三角形.

(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;

(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证: △PBD∽△AMN. C

C N

N E D A B M M D B

A E

图② 图①

第25题图 八、(本题14分) 26.如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在yo轴的正半轴上,且AB1,OB3,矩形ABOC绕点O按顺时针方向旋转60后得到

o矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线yaxbxc过点A,E,D. (1)判断点E是否在y轴上,并说明理由; (2)求抛物线的函数表达式;

(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

y E A B F C D O 第26题图

x 22008年沈阳市中等学校招生统一考试

第 5 页 共 11 页

数学试题参考答案及评分标准

一、选择题(每小题3分,共24分) 1.B 2.A 3.D 4.C 5.C 二、填空题(每小题3分,共24分) 9.20

o6.D 7.A

o8.C

10.2m(m2)(m2)

o

11.120

13.x4

14.12

12.BAD90(或ADAB,ACBD等)

15.65 16.8 三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)

17.解:原式1(2)27523 ···························································· 4分

1233523 ··················································································· 5分 36 ······································································································ 6分

18.解:12(x3)x ·················································································· 2分

12x6x

·········································································································· 5分 x7 ·

1检验:将x7代入原方程,左边右边 ························································ 7分

4所以x7是原方程的根 ·················································································· 8分 (将x7代入最简公分母检验同样给分)

19.解:原式xyyx2xyyx2y ················································ 4分 ········································································································ 6分 xy ·

1当x,y3时,

3原式31 ······················································································ 8分 20.解:(1)答案不唯一,如分割线为三角形的三条中位线中任意一条所在的直线等.

································· 2分

拼接的图形不唯一,例如下面给出的三种情况:

图① 图② 图③ 图④

2222213第 6 页 共 11 页

图⑤ 图⑥ 图⑦

图①~图④,图⑤~图⑦,图⑧~图⑨,画出其中一组图中的两个图形. ······················ 6分 (2)对应(1)中所给图①~图④的周长分别为425,8,425,425; 图⑤~图⑦的周长分别为10,825,825;

图⑧~图⑨的周长分别为245,445.结果正确. ···································· 10分 四、(每小题10分,共20分)

图⑧ 图⑨

» ·ADDB21.解:(1)QODAB,»·························································· 3分

11································································ 5分 DEBAOD52o26o ·

22(2)QODAB,ACBC,△AOC为直角三角形, QOC3,OA5,

由勾股定理可得ACOA2OC252324 ·············································· 8分 ························································································ 10分 AB2AC8 ·

122.解:(1)P(一次出牌小刚出“象”牌) ··················································· 4分

3(2)树状图(树形图):

小刚

A

小明

A1

B1 C1 A1

开始

B

B1 C1 A1

C

B1

C1 ·············································································· 8分

第 7 页 共 11 页

或列表

小刚 小明 A1 (A,A1) (B,A1) B1 (A,B1) (B,B1) (C,B1) C1 (A,C1) (B,C1) (C,C1) A B C (C,A1) ···························································· 8分 由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种. ········································································ 9分

1···································································· 10分 P(一次出牌小刚胜小明). ·3五、(本题12分) 23.解:(1)21······························································································ 2分 (2)一班众数为90,二班中位数为80 ······························································· 6分 (3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好; ···································································································· 8分 ②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; ················································································································· 10分 ③从B级以上(包括B级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班成绩好. ······························································································· 12分 六、(本题12分) 24.解:(1)设y与x之间的关系为一次函数,其函数表达式为ykxb ················ 1分 将(0,100),(180),代入上式得,

k20b100 解得 b100kb80························································································· 4分 y20x100 ·

验证:当x2时,y20210060,符合一次函数; 当x2.5时,y202.510050,也符合一次函数.

可用一次函数y20x100表示其变化规律,

而不用反比例函数、二次函数表示其变化规律. ··················································· 5分 ·························· 6分 y与x之间的关系是一次函数,其函数表达式为y20x100 ·(2)当x4.2时,由y20x100可得y16

第 8 页 共 11 页

即货车行驶到C处时油箱内余油16升. ····························································· 8分 (3)方法不唯一,如:

方法一:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 设在D处至少加油a升,货车才能到达B地.

636804.2·················································· 11分 2010a16, ·

80解得,a69(升) ····················································································· 12分

依题意得,

方法二:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 汽车行驶18千米的耗油量:

18204.5(升) 80D,B之间路程为:636804.218282(千米)

282················································································ 11分 2070.5(升) ·

80汽车行驶282千米的耗油量:

··································································· 12分 70.510(164.5)69(升) ·

方法三:由(1)得,货车行驶中每小时耗油20升, ············································· 9分

设在D处加油a升,货车才能到达B地.

636804.22010≤a16,

80解得,a≥69 ····························································································· 11分 在D处至少加油69升,货车才能到达B地. ················································· 12分

依题意得,

七、(本题12分) 25.证明:(1)①QBACDAE BAECAD

QABAC,ADAE △ABE≌△ACD

································································································· 3分 BECD ·

②由△ABE≌△ACD得ABEACD,BECD

················································ 4分 QM,N分别是BE,CD的中点,BMCN ·

又QABAC △ABM≌△ACN

··························································· 6分 AMAN,即△AMN为等腰三角形 ·

(2)(1)中的两个结论仍然成立. ···································································· 8分 (3)在图②中正确画出线段PD

由(1)同理可证△ABM≌△ACN CANBAM BACMAN 又QBACDAE

MANDAEBAC

································ 10分 △AMN,△ADE和△ABC都是顶角相等的等腰三角形 ·

PBDAMN,PDBADEANM

··················································································· 12分 △PBD∽△AMN ·

八、(本题14分)

第 9 页 共 11 页

26.解:(1)点E在y轴上 ·············································································· 1分 理由如下:

连接AO,如图所示,在Rt△ABO中,QAB1,BO3,AO2

sinAOB1o,AOB30 2o由题意可知:AOE60

BOEAOBAOE30o60o90o

Q点B在x轴上,点E在y轴上. ································································· 3分

(2)过点D作DMx轴于点M

QOD1,DOM30o

在Rt△DOM中,DMQ点D在第一象限,

31,OM

2231点D的坐标为 ················································································ 5分 2,2由(1)知EOAO2,点E在y轴的正半轴上

点E的坐标为(0,2)

, ·点A的坐标为(31)················································································· 6分 Q抛物线yax2bxc经过点E,

c2

312,,D由题意,将A(31)代入yaxbx2中得 ,2283a3b21a9 解得 331b2ab534229853x2 ·所求抛物线表达式为:yx2················································· 9分

99(3)存在符合条件的点P,点Q. ································································· 10分

第 10 页 共 11 页

理由如下:Q矩形ABOC的面积ABgBO3 以O,B,P,Q为顶点的平行四边形面积为23.

由题意可知OB为此平行四边形一边, 又QOB3

······················································································ 11分 OB边上的高为2 ·依题意设点P的坐标为(m,2)

853x2上 Q点P在抛物线yx299853m2m22

99解得,m10,m253 853P2),P221(0,8,

Q以O,B,P,Q为顶点的四边形是平行四边形,

PQ∥OB,PQOB3, 当点P1的坐标为(0,2)时,

点Q的坐标分别为Q1(3,2),Q2(3,2);

A B F y E C D O M x 53当点P2的坐标为28,时,

点Q的坐标分别为Q313333,2Q,2,. ··········································· 14分 488(以上答案仅供参考,如有其它做法,可参照给分)

第 11 页 共 11 页

因篇幅问题不能全部显示,请点此查看更多更全内容