不同的文化环境,家庭背景和自身思维方式的不同,孩子所使用的方法必然是不相同的,作为教师应该尊重学生的想法,鼓励学生独立思考,提倡计算方法的多样化,这是新课程标准下提出的一个教学新理念,凭着自己对它的理解,我尝试上了 “两位数减一位数的退位减法”,课余,想法颇多……
新课程标准使“算法多样化”一炮走红,大家都在尝试,都在力求自己的课能够很好地渗透这个理念,于是,慢慢地酝酿出了这样的三句话:
1、“他的方法你听懂了吗?”
2、“你还有其他不同的方法吗?”
3、“下面我们一起用这位同学的方法做一做,好吗?”
这三句话教师该问吗?该说吗?
我的理解:该说。
第一句:“他的方法你听懂了吗?”
学习方式的转变是新课程改革的显著特征,改变原有的单一、被动的学习方式,建立和形成旨在充分调动、发挥学生主体性的多样化的学习方式,促进学生在教师指导下主动地、富有个性地学习。孩子的学习方式是相对稳定的,它不仅包括学习方法及其关系,也涉及到学习习惯、学习态度、学习品质等心理因素。《数学课程标准》强调:要关注学生“是否积极主动地参与学习活动;是否有学好数学的自信心,能够不回避遇到的困难;是否乐于与他人合作,愿意与同伴交流各自的想法;是否能够通过独立思考获得解决问题的思路;能否找到有效的解决问题的方法,尝试从不同的角度去思考问题;是否能够使用数学语言有条理地表达自已的思考过程;是否理解别人的思路,并在与同伴的交流中获益;是否有反思自已思考过程的意识。”作为一年级的孩子,学习习惯、学习态度的养成是很重要的,教师说这样的一句话,旨在让孩子学会倾听,学会一种自主学习的本领,而不是说要把算法硬塞给学生。“他的方法你听懂了吗?”简单的一句话让我们的学生充当了教师的角色,把“教”的权利给学生,让学生也去听其他同学的发言,或同意或反驳,培养学生的批判意识和怀疑精神,赏识和学习其他同学的独特、富有个性的理解和表达,所以我觉得这句话说得很有必要。
第二句:“你还有其他不同的方法吗?”
“算法多样”是相对于整体来说的而非个体,“你还有其他不同的算法吗?”这句话似乎有逼着学生挖空心思、转弯抹角地去想“不同算法”的味道,但是我觉得这句话本身并没有附带那么多的意思。难道如此简单的一句话就能够启迪孩子的思维,让他们说出原本不属于他们的思想和方法吗?教师的一些提示性语言给学生提供了充分的思维空间,鼓励学生学会从不同的角度、不同的层面,以不同的观点,认识同一件事、同一个事物,从而让学生更全面、更准确地掌握知识。在新教材实施的开始阶段,我们的学生一般不太愿意接受题目的多种算法,认为只要用一种方法做出来就行了,何必再费劲寻找不同的方法呢?所以我们尝试以表扬、鼓励的形式,引导学生对同一题目用不同的方法去解决,要求学生寻找不同的解题思路,再通过讨论得出许多算法。在这样的思维活动中,学生能够感受到算法多样化带来的快乐。如果能经常进行这样的训练,学生就能慢慢地体会到从不同角度看问题的好处,品尝到其中的乐趣。学生的思维也会逐渐活跃起来,再遇到这样的问题,就能很自觉地将自己的思维发散开来,积极主动地去探索知识。
所以在这节课上老师这样的一个提问,可以很好的展现孩子自己的、独特的思维,体现出整体算法的多样化。当然,如果没有教师的提问,学生能够自发地要想表达自己不同的方法,那是最理想的。学生能够不再依赖老师,走向独立,这是教学的最高境界。
第三句:“下面我们一起用这位同学的方法做一做,好吗?”
看到这样的话,我们会不会有这样的疑惑出现:“这种方法学生不喜欢怎么办?一定要他做吗?”我认为算法多样化的根本目的并不是让学生得到自己最喜欢的方法!而是在于让学生感受解决问题策略的多样性,并形成解决问题的基本策略。
每个人都是独立的,都是具有独立意义的个体,孩子也一样。他们都是独立于教师的头脑之外的,不会依赖别人的意志而转移。当学生他有一种方法的时候,往往会认为自己的想法是最好的,就会很自然的抵制或抗拒和自己不同的方法。但是教师的作用往往也就在于此,当孩子有这种独立意识的时候,教师应该怎样科学的优化和完善孩子头脑中的想法呢?这就体现了教学的艺术。
我们人的认识有三个层次:第一是“懂”;第二是“会”,即会用学懂了的东西去解决问题,这是一个飞跃;第三是“悟”,即有自已的特点,有自已的思考,这更是一个大的飞跃。光“懂”学生可以只是听一听;“会”就必须要自己去尝试,自已去用学懂了的东西解决问题;而“悟”是一定要在自己亲身体验的基础上进行的,因为“悟”是一个思考过程,思考是不可以替代的,是必须自已去完成的一件非常艰苦的过程。所以我在课堂上让学生听了其他小朋友的方法后再尝试做一做,这并不是为了刻意地强调其中一种方法或者面面俱到地巩固每一种方法,而是力求激活每个学生的思维,给他们思考的时间和空间,让孩子们思维的真正碰撞一下。
然而在学生尝试练习的时候,也略微渗透着一点算法多样化的优化,因为随着现代数学的发展,我们越来越感觉到,很难讲清哪种方法是最好的。我们原来认为某种方法是最好的,可能通过自己的尝试证明这个结论并不一定合适,也许我们一开始认为很“笨”的方法,结果却成为了好的方法。在解决“36-8”这样的问题时,学生提出各种方法后,最理想的方法当然是:“6减去8不够减,向30借10,变成16-8等于8,再加上20等于28。”但是这样的方法是否能够让学生接受呢?教师应该完全放手,让孩子在交流的过程中可以主动选择适合自己的方法,而不是被动的接受。
就让我们一起来做一做,尝试去学会尊重,学会欣赏,让算法多样化能够进一步优化。学生不是一张白纸,他作为课堂教学资源越来越引起老师地注意。
因篇幅问题不能全部显示,请点此查看更多更全内容