发布网友 发布时间:2022-04-21 22:05
共1个回答
热心网友 时间:2023-09-02 10:04
任意两边之和大于第三边,任意两边之差小于第三边。即a+b>c,a>c-b,b+c>a,b>a-c,a+c>b,c>b-a。
设三角形三边为a,b,c则
a+b>c,a>c-b
b+c>a,b>a-c
a+c>b,c>b-a
图1 三角形ABC
如图1,任意△ABC,求证AB+AC>BC。
证明:在BA的延长线上取AD=AC
则∠D=∠ACD(等边对等角)
∵∠BCD>∠ACD
∴∠BCD>∠D
∴BD>BC(大角对大边)
∵BD=AB+AD=AB+AC
∴AB+AC>BC
直角三角形
性质1:直角三角形两直角边的平方和等于斜边的平方。 性质2:在直角三角形中,两个锐角互余。 性质3:在直角三角形中,斜边上的中线等于斜边的一半。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。 性质5:如图3,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1) AD^2=BD·DC,
(2) AB^2=BD·BC , 射影定理图
(3) AC^2=CD·BC 。 等积式 (4)ABXAC=ADXBC (可用面积来证明)