发布网友 发布时间:2022-04-20 07:54
共3个回答
热心网友 时间:2023-09-10 08:34
|A^(-1)|=|A|^(-1)
逆矩阵;
设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。
注:E为单位矩阵。
定义:
验证两个矩阵互为逆矩阵
按照矩阵的乘法满足:
故A,B互为逆矩阵。
逆矩阵的唯一性
若矩阵A是可逆的,则A的逆矩阵是唯一的。
证明:
若B,C都是A的逆矩阵,则有
所以B=C,即A的逆矩阵是唯一的。
判定简单的矩阵不可逆
如
。假设有
是A的逆矩阵,则有
比较其右下方一项:0≠1。[1]
若矩阵A可逆,则 |A|≠0
若A可逆,即有A-1,使得AA-1=E,故|A|·|A-1|=|E|=1
则|A|≠0
热心网友 时间:2023-09-10 08:34
|A^(-1)|=|A|^(-1)逆矩阵;
设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。
证明:
因为 (AB)(B^-1A^-1)
= A(BB^-1)A^-1
= AEA^-1
= AA^-1
= E
所以 (AB)^-1=B^-1A^-1
可逆矩阵还具有以下性质:
(1)若A可逆,则A-1亦可逆,且(A-1)-1=A [4] 。
(2)若A可逆,则AT亦可逆,且(AT)-1=(A-1)T [4] 。
(3)若A、B为同阶方阵且均可逆,则AB亦可逆,且(AB)-1=B-1 A-1。
热心网友 时间:2023-09-10 08:35
如图所示