首页 行业资讯 宠物日常 宠物养护 宠物健康 宠物故事

决策树中,采用二叉树与多叉数各有何优点?

发布网友 发布时间:2022-04-20 10:29

我来回答

1个回答

热心网友 时间:2023-06-30 19:53

分类决策树模型是一种描述对实例进行分类的树形结构. 决策树由结点和有向边组成. 结点有两种类型: 内部结点和叶节点. 内部节点表示一个特征或属性, 叶节点表示一个类.
决策树(Decision Tree),又称为判定树, 是一种以树结构(包括二叉树和多叉树)形式表达的预测分析模型.

分类树--对离散变量做决策树

回归树--对连续变量做决策树

优点:
(1)速度快: 计算量相对较小, 且容易转化成分类规则. 只要沿着树根向下一直走到叶, 沿途的*条件就能够唯一确定一条分类的谓词.
(2)准确性高: 挖掘出来的分类规则准确性高, 便于理解, 决策树可以清晰的显示哪些字段比较重要, 即可以生成可以理解的规则.
(3)可以处理连续和种类字段
(4)不需要任何领域知识和参数假设
(5)适合高维数据
缺点:
(1)对于各类别样本数量不一致的数据, 信息增益偏向于那些更多数值的特征
(2)容易过拟合
(3)忽略属性之间的相关性

若一事假有k种结果, 对应概率为 , 则此事件发生后所得到的信息量I为:

给定包含关于某个目标概念的正反样例的样例集S, 那么S相对这个布尔型分类的熵为:

其中 代表正样例, 代表反样例

假设随机变量(X,Y), 其联合分布概率为P(X=xi,Y=yi)=Pij, i=1,2,...,n;j=1,2,..,m
则条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性, 其定义为X在给定条件下Y的条件概率分布的熵对X的数学期望

在Hunt算法中, 通过递归的方式建立决策树.

使用信息增益, 选择最高信息增益的属性作为当前节点的测试属性

ID3(Examples,Target_attribute,Attributes)

Examples即训练样例集. Target_attribute是这棵树要预测的目标属性. Attributes是除目标属性外供学习到的决策树测试的属性列表. 返回能正确分类给定Examples的决策树.

class sklearn.tree.DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)

*决策树层数为4的DecisionTreeClassifier实例

This plot compares the decision surfaces learned by a dcision tree classifier(first column), by a random forest classifier(second column), by an extra-trees classifier(third column) and by an AdaBoost classifier(fouth column).

Output:

A comparison of a several classifiers in scikit-learn on synthetic datasets.
The point of this examples is to illustrate the nature of decision boundaries of different classifiers.

Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers.

This example fits an AdaBoost decisin stump on a non-linearly separable classification dataset composed of two "Gaussian quantiles" clusters and plots the decision boundary and decision scores.

Output:

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com