发布网友 发布时间:2022-04-23 04:41
共3个回答
热心网友 时间:2023-07-16 18:47
整数加、减:把数位对齐,从低位加起。
整数乘法:相同数位对齐,从乘法的末位算起,用乘法的每一位去乘被乘数,得数的末位和乘数对齐。
整数除法:从被除数的最高位除起,除到被除数的哪一位,商就写在那一位上面,每次除后余下的数必须比余数小。
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。
如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。
扩展资料:
整数中,能够被2整除的数,叫做偶数。不能被2整除的数则叫做奇数。即当n是整数时,偶数可表示为2n(n 为整数);奇数则可表示为2n+1(或2n-1)。
偶数包括正偶数(亦称双数)、负偶数和0。所有整数不是奇数,就是偶数。
在十进制里,我们可用看个位数的方式判断该数是奇数还是偶数:个位为1,3,5,7,9的数为奇数;个位为0,2,4,6,8的数为偶数。
整除特征:
1. 若一个数的末位是单偶数,则这个数能被2整除。
2. 若一个数的数字和能被3整除,则这个整数能被3整除。
3. 若一个数的末尾两位数能被4整除,则这个数能被4整除。
4. 若一个数的末位是0或5,则这个数能被5整除。
5. 若一个数能被2和3整除,则这个数能被6整除。
参考资料:百度百科---整数
热心网友 时间:2023-07-16 18:48
最普遍的介绍:6
6
举例说明应用场景:6
其它含义:6
举例说明应用场景:6
热心网友 时间:2023-07-16 18:48
四则运算 计算法则
整数加、减把数位对齐,从低位加起。
小数加、减把小数点对齐,再按照整数加、减法的法则进行运算。
分数加、减当分母相同时,把分子直接相加减;分母不同时,要先通分,在相加减。
整数乘法 相同数位对齐,从乘法的末位算起,用乘法的每一位去乘被乘数,得数的末位和
乘数对齐。
整数除法 从被除数的最高位除起,除到被除数的哪一位,商就写在那一位上面,每次除后余
下的数必须比余数小。
分数乘法 用分子相乘的积做分子,用分母相乘的积做分母。
分数除法 甲数除以乙数(0除外),等于甲数乘乙数的倒数。
小数乘法 小数乘整数,先按整数乘法法则算出积,再看被乘数有几位小数,就从积的右边起
数出几位,点上小数点。
小数除法 除数是整数时,按照整数除法的法则计算,商的小数点要和被除数的小数点对齐;
除数是小数时,先移动除数的小数点,使它变成整数,除数的小数点向右移动几
位,被除数的小数点也向右移动几位(数位不够的用“0”补足)然后按照除数是整数
的小数除法法则进行计算。