首页 行业资讯 宠物日常 宠物养护 宠物健康 宠物故事

指数函数及性质

发布网友 发布时间:2022-04-21 00:37

我来回答

2个回答

热心网友 时间:2022-06-16 19:14

指数函数其实就是之前学习的一个推广,当底数大于零,可以将指数的取值范围从指数推广到了实数,这就形成了指数函数的形成,对此只有看数学界的定义了。

在此之前有两个前提:

指数函数的底数大于零。
指数函数的底数不能等于一。
数学界指数函数的定义:

一般地,函数

必修一——指数函数以及性质
编辑 搜图

请点击输入图片描述

只要形式上,符合上图的函数形式,则这种函数就是叫做指数函数。其中x是自变量,并且函数的定义域是R。

三、指数函数的性质

由指数函数的形式可以得出,指数函数的底数要求大于零,并且不等于一,这就让定义域划分为了两部分:

必修一——指数函数以及性质
必修一——指数函数以及性质
由于底数的取值范围,造就了两个区间,因此当底数0<a<1时,函数是一个单调递减的函数,当底数a>1时,函数是一个单调递增的函数。

以其中的a>1作为讨论,指数函数也是函数,既然是函数就按照函数的相关性质进行讨论,在这之前要先说明指数函数的定义域: x∈R

指数函数的第一个性质就是单调性,由图可知,指数函数的单调性由a的取值范围决定的,当a>1时,指数函数是单调递增函数,当0<a<1时,指数函数是单调递减函数。
函数第二个性质就是奇偶性,但从图像上看,并没有奇偶性,就不讨论了。
函数第三个性质就是周期性,同理,从图像上看,也是没有周期性,也不做讨论了。
函数第四个性质就是对称性,从图像上看,也没有对称性,也就不讨论了。
这就是从函数的性质上面进行讨论的,除此之外就需要从指数函数自身的性质进行讨论了。

指数函数的所有的图像都过一个定点(0,1),即x=0时,y=1
第二个专属性质就是单调性由a的取值范围决定的。

热心网友 时间:2022-06-16 19:14

指数函数及其性质
(1)指数函数:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是 R (实数)。”
理解:【1】a^x系数为1,否则不是指数函数;【2】x须在指数位置,且不能是x的其它表达式(即只能是x本身);【3】a是常数,【4】(为什么要a>0),如果a=0,指数x≠0时函数值等于0,x=0时函数值无意义,此时自变量就不能取0了。如果a<0,那么a的x次方这个幂将不连续,且出现无法确定是否有意义的不定点。因为负数不能开偶数次方,所以当x是最简分数时,分母为偶数的指数将使得a的x次方无意义。综上:为了指数取值范围为实数所以规定a>0。【5】(a≠1)如果a=1,则y恒等于1,那么这个函数就变成了y=1常数函数,没必要在指数函数中进行研究。
简记:【1】自变量为指数,【2】系数为1,【3】底数为常数,【4】大于零不等于1。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com