发布网友 发布时间:2022-04-25 12:18
共1个回答
热心网友 时间:2024-03-28 11:22
数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若ACB=ACD=ABD=ADB=60,则线段BC,CD,AC三者之间有何等量关系?
经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得ABEADC,从而容易证明ACE是等边三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一种正确的思路:如图3,将ABC绕着点A逆时针旋转60,使AB与AD重合,从而容易证明ACF是等边三角形,故AC=CF,所以AC=BC+CD.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图4,如果把“ACB=ACD=ABD=ADB=60”改为“ACB=ACD=ABD=ADB=45”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.
(2)小华提出:如图5,如果把“ACB=ACD=ABD=ADB=60”改为“ACB=ACD=ABD=ADB=”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.
题干分析:
(1)先判断出ADE=ABC,即可得出ACE是等腰三角形,再得出AEC=45,即可得出等腰直角三角形,即可;(判断ADE=ABC也可以先判断出点A,B,C,D四点共圆)
(2)先判断出ADE=ABC,即可得出ACE是等腰三角形,再用三角函数即可得出结论.
解题反思:
此题是几何变换综合题,主要考查了全等三角形的判定,四边形的内角和,等腰三角形的判定和性质,解本题的关键是构造全等三角形,是一道基础题目.