发布网友 发布时间:2024-10-20 18:30
共2个回答
热心网友 时间:2分钟前
2.
当圆p半径最长时,
p在x轴上,
p(2,
0)
(圆p与圆m相切于(0,
0),
与圆n相切于(4,
0)),
半径r=
2
设l斜率为k,
方程y
=
kx
+
b,
kx
-
y
+
b
=
0
m与l的距离为圆m半径r
=
1
=
|-k
-
0
+
b|/√(k²
+
1)
k²
+
1
=
k²
-
2kb
+
b²
(i)
p与l的距离为圆p半径r
=
2
=
|2k
-
0
+
b|/√(k²
+
1)
(ii)
(2k
+
b)²
=
4(k²
+
1)
=
4k²
-
8kb
+
4b²
b²
=
4kb
显然b
≠
0
b
=
4k
代入(i):
k
=
±√2/4
b
=
±√2
由于对称性,不妨只考虑k
>
0,
b
>
0
y
=
√2x/4
+
√2
(iii)
代入x²/4
+
y²/3
=
1:
7x²
+
8x
-
8
=
0
x₁
+
x₂
=
-8/7
x₁x₂
=
-8/7
|ab|²
=
(x₁
-
x₂)²
+
(y₁
-
y₂)²
=
(x₁
-
x₂)²
+
(√2x₁/4
+
√2
-
√2x₂/4
-
√2)²
=
(9/8)(x₁
-
x₂)²
=
(9/8)[(x₁
+
x₂)²
-
4x₁x₂]
=
(9/8)[(-8/7)²
-
4(-8/7)]
=
326/49
|ab|
=
18/7
热心网友 时间:6分钟前
(1)设点P(x,y),动圆P的半径为r,
∵⊙N与⊙P内切,∴|NP|=3-r,
∵⊙M与⊙P外切,∴|MP|=1+r,
∵|MP|+|NP|=4>|MN|=2,
∴P点的轨迹是以M,N为焦点的椭圆.|MP|+|NP|=4=2a,∴a=2,
∵|MN|=2c=2,c=1,
∴b2=a2-c2=3,
∴P的轨迹方程为:
x2
4
+
y2
3
=1.
(2)直线l的方程为y=2x-2,代入
x2
4
+
y2
3
=1,消去y得19x2-32x+2=0,
x1+x2=
32
19
,x1?x2=
2
19
.
∴|AB|=
1+22
?
(
32
19
)2?4(
2
19
)
=
5
?
872
19
=
2
1090
19
.