发布网友 发布时间:2022-04-22 06:15
共1个回答
热心网友 时间:2023-07-18 14:32
诺特的数学思想直接影响了30年代以后代数学乃至代数拓扑学、代数数论、代数几何的发展。她的早期工作主要研究代数不变式及微分不变式。1920~1927年间她主要研究交换代数与“交换算术”。1916年后,她接触R.戴德金等人的工作,开始由古典代数学向抽象代数学过渡。1921年写出的《整环的理想理论》是交换代数发展的里程碑。建立了交换诺特环理论,证明了准素分解定理。1926年发表《代数数域及代数函数域的理想理论的抽象构造》,给戴德金环一个公理刻画,指出素理想因子唯一分解定理的充分必要条件。这两篇文章包含抽象代数的精髓。 1927~1935年,诺特研究非交换代数与“非交换算术”。1927年起,她把表示理论、理想理论及模理论统一在所谓“超复系”即代数的基础上。后又引进交叉积的概念并用来决定有限维伽罗瓦扩张的布饶尔群。最后导致代数的主定理的证明:代数数域上的中心可除代数是循环代数。